Search results

Search for "formation mechanism" in Full Text gives 42 result(s) in Beilstein Journal of Nanotechnology.

Surfactant-free syntheses and pair distribution function analysis of osmium nanoparticles

  • Mikkel Juelsholt,
  • Jonathan Quinson,
  • Emil T. S. Kjær,
  • Baiyu Wang,
  • Rebecca Pittkowski,
  • Susan R. Cooper,
  • Tiffany L. Kinnibrugh,
  • Søren B. Simonsen,
  • Luise Theil Kuhn,
  • María Escudero-Escribano and
  • Kirsten M. Ø. Jensen

Beilstein J. Nanotechnol. 2022, 13, 230–235, doi:10.3762/bjnano.13.17

Graphical Abstract
  • reports on the formation mechanism involving chain-like structures made for the synthesis of Pt NPs [33]. Conclusion In conclusion, Os NPs with a hcp crystal structure and a size of approx. 1–2 nm are synthesized in methanol, ethanol, and water mixtures of OsCl3 or H2OsCl6 precursors, without the need for
  • suitable platform to inspire future studies on the formation mechanism of Os-based nanomaterials in which their properties are further explored. TEM micrographs of Os NPs obtained using water (66 vol %) and methanol (33 vol %), no base, and 100 mM of (a) OsCl3 and (b) H2OsCl6 as precursors after a one-week
  • shows the same PDF plotted to 21 Å. (b) Overall formation mechanism of the hcp Os NPs. The Os chloride precursor reacts with the alcohol/water mixture to form chain-like structures of [OsOxCly]-octahedra, which after a long incubation time form Os NPs. Os, Cl, and O atoms are shown in grey, green, and
PDF
Album
Supp Info
Letter
Published 16 Feb 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Revealing the formation mechanism and band gap tuning of Sb2S3 nanoparticles

  • Maximilian Joschko,
  • Franck Yvan Fotue Wafo,
  • Christina Malsi,
  • Danilo Kisić,
  • Ivana Validžić and
  • Christina Graf

Beilstein J. Nanotechnol. 2021, 12, 1021–1033, doi:10.3762/bjnano.12.76

Graphical Abstract
  • prepared via the hot-injection approach. In contrast to earlier work, the reaction temperature was decreased to 150 °C so that the reaction was slowed down and could be stopped at defined reaction stages. Thereby, the formation mechanism of the nanomaterial and the associated kinetics could be revealed
  • reaction allowed tuning of the optical band gap of the amorphous nanoparticles in the range of 2.2–2.0 eV. On the contrary, the optical band gap of the crystalline particles decreased to a value of 1.7 eV and remained constant when the reaction progressed. Based on the proposed formation mechanism, future
  • mechanisms, and in particular the associated kinetics of Sb2S3 nanoparticles, is therefore still lacking. Nevertheless, it is necessary to understand the nanomaterial formation mechanism to achieve control over the morphological and optical properties of the particles, which is crucial for the further
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2021

Progress and innovation of nanostructured sulfur cathodes and metal-free anodes for room-temperature Na–S batteries

  • Marina Tabuyo-Martínez,
  • Bernd Wicklein and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2021, 12, 995–1020, doi:10.3762/bjnano.12.75

Graphical Abstract
PDF
Album
Review
Published 09 Sep 2021

Rapid controlled synthesis of gold–platinum nanorods with excellent photothermal properties under 808 nm excitation

  • Jialin Wang,
  • Qianqian Duan,
  • Min Yang,
  • Boye Zhang,
  • Li Guo,
  • Pengcui Li,
  • Wendong Zhang and
  • Shengbo Sang

Beilstein J. Nanotechnol. 2021, 12, 462–472, doi:10.3762/bjnano.12.37

Graphical Abstract
  • K2PtCl4 were small (5 and 10 mM), the LSPR peaks of the products had a small redshift relative to the bare AuNRs, as shown in Figure 3a Au@Pt-1 and Au@Pt-2. Similar to the formation mechanism of AuNRs, the curvature of the tip is larger than that of the side, resulting in a preferential deposition of Pt
PDF
Album
Full Research Paper
Published 17 May 2021

A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures

  • Sina Kaabipour and
  • Shohreh Hemmati

Beilstein J. Nanotechnol. 2021, 12, 102–136, doi:10.3762/bjnano.12.9

Graphical Abstract
PDF
Album
Review
Published 25 Jan 2021

Towards 3D self-assembled rolled multiwall carbon nanotube structures by spontaneous peel off

  • Jonathan Quinson

Beilstein J. Nanotechnol. 2020, 11, 1865–1872, doi:10.3762/bjnano.11.168

Graphical Abstract
  • carpets [22], less conventional and complex structures were also developed and their formation mechanism is proposed in this study. In a typical AACVD synthesis, MWCNTs grow perpendicular to the substrates (i.e., quartz reactor walls or silicon wafers [23]). Under the conditions of the present study, it
  • from the carpet and detached from MWCNT underlayers, with the latest layer still connected to the substrate (Figure 1a). Discussion To clarify the formation mechanism of the unusual structures shown in Figure 3, control experiments were conducted in which only C1/N2 or C2/N1 structures were formed. SEM
  • , becomes free-standing. Different interactions between Cx−1 and Nx sections [31] lead to the rolling of the free-standing structure, which eventually leads to the MWCNT rolled forest configuration. Another observation that strongly supports the proposed formation mechanism is the curved and rolled aspect
PDF
Album
Supp Info
Full Research Paper
Published 18 Dec 2020

Formation of nanoripples on ZnO flat substrates and nanorods by gas cluster ion bombardment

  • Xiaomei Zeng,
  • Vasiliy Pelenovich,
  • Bin Xing,
  • Rakhim Rakhimov,
  • Wenbin Zuo,
  • Alexander Tolstogouzov,
  • Chuansheng Liu,
  • Dejun Fu and
  • Xiangheng Xiao

Beilstein J. Nanotechnol. 2020, 11, 383–390, doi:10.3762/bjnano.11.29

Graphical Abstract
  •  5c,e,f). But this ripple formation mechanism gives no information about the large-scale ordering of the nanoripples observed on the nanorods at high ion fluences. If the object under irradiation is simply rescaled, then, in the case of the wavelength comparable to the nanorod facet size, only a few
PDF
Album
Full Research Paper
Published 24 Feb 2020

Chiral nanostructures self-assembled from nitrocinnamic amide amphiphiles: substituent and solvent effects

  • Hejin Jiang,
  • Huahua Fan,
  • Yuqian Jiang,
  • Li Zhang and
  • Minghua Liu

Beilstein J. Nanotechnol. 2019, 10, 1608–1617, doi:10.3762/bjnano.10.156

Graphical Abstract
  • result indicates that the NCLG assemblies might form a bilayer structure with high interdigitation of the alkyl chains, where the bilayer structure experiences a large tilt. Fourier-transform infrared (FTIR) spectra In order to elucidate the formation mechanism of the helicity and nanostructures of the
  • self-assembled molecules, FTIR spectroscopy was employed to evaluate the formation mechanism of self-assembly. As shown in Figure 5, for the 2NCLG and 4NCLG assemblies, two absorption bands at ≈3330 cm−1 and ≈3284 cm−1 were observed, which can be ascribed to the N–H stretching vibration. While for
PDF
Album
Supp Info
Full Research Paper
Published 05 Aug 2019

Kelvin probe force microscopy work function characterization of transition metal oxide crystals under ongoing reduction and oxidation

  • Dominik Wrana,
  • Karol Cieślik,
  • Wojciech Belza,
  • Christian Rodenbücher,
  • Krzysztof Szot and
  • Franciszek Krok

Beilstein J. Nanotechnol. 2019, 10, 1596–1607, doi:10.3762/bjnano.10.155

Graphical Abstract
  • ]. The high level of crystallinity of these nanowires is the result of the formation mechanism, which comprises incongruent strontium effusion from SrTiO3 and then a TiO structure growth via crystallographic shearing and diffusion (more details can be found in [12]). The abrupt TiO/SrTiO3 interface and
PDF
Album
Full Research Paper
Published 02 Aug 2019

Direct observation of oxygen-vacancy formation and structural changes in Bi2WO6 nanoflakes induced by electron irradiation

  • Hong-long Shi,
  • Bin Zou,
  • Zi-an Li,
  • Min-ting Luo and
  • Wen-zhong Wang

Beilstein J. Nanotechnol. 2019, 10, 1434–1442, doi:10.3762/bjnano.10.141

Graphical Abstract
  • vacancies can significantly alter the electron structure by creating new defect levels in forbidden bands, and thus boost oxygen evolution [14]. Despite the important role of the oxygen vacancies in Bi2WO6, understanding their formation mechanism remains elusive, in part due to the lack of direct
PDF
Album
Supp Info
Full Research Paper
Published 18 Jul 2019

Synthesis of MnO2–CuO–Fe2O3/CNTs catalysts: low-temperature SCR activity and formation mechanism

  • Yanbing Zhang,
  • Lihua Liu,
  • Yingzan Chen,
  • Xianglong Cheng,
  • Chengjian Song,
  • Mingjie Ding and
  • Haipeng Zhao

Beilstein J. Nanotechnol. 2019, 10, 848–855, doi:10.3762/bjnano.10.85

Graphical Abstract
  • Coal Salt Resources, Pingdingshan 467000, People′s Republic of China 10.3762/bjnano.10.85 Abstract MnO2–CuO–Fe2O3/CNTs catalysts, as a low-dimensional material, were fabricated by a mild redox strategy and used in denitration reactions. A formation mechanism of the catalysts was proposed. NO
  • formed. The following formation mechanism was inferred: Cu2+ and Fe3+ ions are first adsorbed on the surface of acid-treated CNTs via electrostatic interaction. Then the Cu(NO3)2 and Fe(NO3)3 are partly hydrolyzed in situ into Cu(OH)2, Fe(OH)3, and HNO3 on the CNTs. Afterwards, MnO2 is formed through the
PDF
Album
Supp Info
Full Research Paper
Published 11 Apr 2019

pH-mediated control over the mesostructure of ordered mesoporous materials templated by polyion complex micelles

  • Emilie Molina,
  • Mélody Mathonnat,
  • Jason Richard,
  • Patrick Lacroix-Desmazes,
  • Martin In,
  • Philippe Dieudonné,
  • Thomas Cacciaguerra,
  • Corine Gérardin and
  • Nathalie Marcotte

Beilstein J. Nanotechnol. 2019, 10, 144–156, doi:10.3762/bjnano.10.14

Graphical Abstract
  • slight tendency to increase (Table 1). The dpore/d0 ratio is then almost constant (dpore/d0 ≈ 0.50), indicating that the mesostructure formation mechanism is similar within that pH range. Figure 3 helps to highlight the changes in the mesoporous volume (Figure 3a) and pore diameter (Figure 3b) observed
  • depends on the electrostatic stabilization provided by the pH-dependent negative charge of silica. Chemical composition of the hybrid materials and formation mechanism of mesostructures The chemical composition of the as-synthesized hybrid materials was determined in order to understand how the pH of the
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2019

Low cost tips for tip-enhanced Raman spectroscopy fabricated by two-step electrochemical etching of 125 µm diameter gold wires

  • Antonino Foti,
  • Francesco Barreca,
  • Enza Fazio,
  • Cristiano D’Andrea,
  • Paolo Matteini,
  • Onofrio Maria Maragò and
  • Pietro Giuseppe Gucciardi

Beilstein J. Nanotechnol. 2018, 9, 2718–2729, doi:10.3762/bjnano.9.254

Graphical Abstract
  • Discussion Gold etching and tip formation mechanism The gold electrochemical corrosion is driven by a well-known redox process in acidic environment [31], whose main reactions are: Here the superficial gold atoms are oxidized, transforming into either Au(I) or Au(III). The chlorine ions combine with Au(I) or
PDF
Album
Supp Info
Full Research Paper
Published 22 Oct 2018

Atomic-level characterization and cilostazol affinity of poly(lactic acid) nanoparticles conjugated with differentially charged hydrophilic molecules

  • María Francisca Matus,
  • Martín Ludueña,
  • Cristian Vilos,
  • Iván Palomo and
  • Marcelo M. Mariscal

Beilstein J. Nanotechnol. 2018, 9, 1328–1338, doi:10.3762/bjnano.9.126

Graphical Abstract
  • characterization in silico provides a comprehensive understanding of properties that govern the formation mechanism and drug loading of NPs and help create better designs and promising compositions. Although there are different experimental methods for synthesis and preparation of PLA–PEG NPs [8][11], molecular
PDF
Album
Full Research Paper
Published 02 May 2018

Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations

  • Jaison Jeevanandam,
  • Ahmed Barhoum,
  • Yen S. Chan,
  • Alain Dufresne and
  • Michael K. Danquah

Beilstein J. Nanotechnol. 2018, 9, 1050–1074, doi:10.3762/bjnano.9.98

Graphical Abstract
  • characteristics in yielding NPs [164][165][166][167]. The NP formation mechanism is under extensive debate and revealing the mechanism will help in further improvement of the magnetotactic-bacteria-based NP synthesis in the future. Algae, fungi, yeast and bacterial spores: Algae such as Chlorella vulgaris
PDF
Album
Review
Published 03 Apr 2018

Review: Electrostatically actuated nanobeam-based nanoelectromechanical switches – materials solutions and operational conditions

  • Liga Jasulaneca,
  • Jelena Kosmaca,
  • Raimonds Meija,
  • Jana Andzane and
  • Donats Erts

Beilstein J. Nanotechnol. 2018, 9, 271–300, doi:10.3762/bjnano.9.29

Graphical Abstract
PDF
Album
Review
Published 25 Jan 2018

Facile synthesis of silver/silver thiocyanate (Ag@AgSCN) plasmonic nanostructures with enhanced photocatalytic performance

  • Xinfu Zhao,
  • Dairong Chen,
  • Abdul Qayum,
  • Bo Chen and
  • Xiuling Jiao

Beilstein J. Nanotechnol. 2017, 8, 2781–2789, doi:10.3762/bjnano.8.277

Graphical Abstract
  • nanostructured plasmonic photocatalyst, silver/silver thiocyanate (Ag@AgSCN), has been prepared by a simple precipitation method followed by UV-light-induced reduction. The ratio of Ag to silver thiocyanate (AgSCN) can be controlled by simply adjusting the photo-induced reduction time. The formation mechanism of
  • activity of AgSCN [31][32]. Formation mechanism of Ag@AgSCN nanostructures To investigate the formation mechanism of Ag@AgSCN nanostructures, a time-dependent precipitation experiment was conducted. It can be seen that small AgSCN nanoplates with size of ≈10 nm were formed in 2 min due to the low
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2017

A systematic study of the controlled generation of crystalline iron oxide nanoparticles on graphene using a chemical etching process

  • Peter Krauß,
  • Jörg Engstler and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2017, 8, 2017–2025, doi:10.3762/bjnano.8.202

Graphical Abstract
  • interactions between growing neighboring CNTs, can occur. A schematic formation mechanism for the growth of CNTs on iron oxide nanoparticles/graphene is shown in Figure 8. As the temperature increases, the iron oxide nanoparticles agglomerate, resulting in a diameter increase. Due to mechanical stress
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2017

A new approach to grain boundary engineering for nanocrystalline materials

  • Shigeaki Kobayashi,
  • Sadahiro Tsurekawa and
  • Tadao Watanabe

Beilstein J. Nanotechnol. 2016, 7, 1829–1849, doi:10.3762/bjnano.7.176

Graphical Abstract
  • formation mechanism of deformation ledge, although the stress-induced grain growth and arrangement of random boundaries toward 45° to the stress axis was not observed in their nanocrystalline Ni specimens. Our recent observations strongly suggested the important roles of gran boundary microstructure in
PDF
Album
Review
Published 25 Nov 2016

Microwave synthesis of high-quality and uniform 4 nm ZnFe2O4 nanocrystals for application in energy storage and nanomagnetics

  • Christian Suchomski,
  • Ben Breitung,
  • Ralf Witte,
  • Michael Knapp,
  • Sondes Bauer,
  • Tilo Baumbach,
  • Christian Reitz and
  • Torsten Brezesinski

Beilstein J. Nanotechnol. 2016, 7, 1350–1360, doi:10.3762/bjnano.7.126

Graphical Abstract
  • sol–gel synthesis using anhydrous zinc acetate and iron(III) acetylacetonate as the precursors and rac-1-phenylethanol as a solvent. Details on the formation mechanism from gas chromatography-mass spectrometry (GC-MS) are given in Supporting Information File 1, Figure S1–S4 and Table S1. The size and
PDF
Album
Supp Info
Full Research Paper
Published 27 Sep 2016

Facile synthesis of water-soluble carbon nano-onions under alkaline conditions

  • Gaber Hashem Gaber Ahmed,
  • Rosana Badía Laíño,
  • Josefa Angela García Calzón and
  • Marta Elena Díaz García

Beilstein J. Nanotechnol. 2016, 7, 758–766, doi:10.3762/bjnano.7.67

Graphical Abstract
  • versatile materials for chemical sensing of metal ions. The high content of lycopene in tomatoes may explain the formation of C-onions in alkaline media and a possible formation mechanism for such structures was outlined. Keywords: carbon dots; carbon onions; metal-ion sensing; photoluminescence; thermal
  • characteristics of these structures the formation mechanism of C-onions is proposed. Finally, a preliminary test on the use of such C-onions as sensing materials for metal ions is outlined. Results and Discussion In Figure 1a the HRTEM image reveals that the tomato C-dots synthetized by conventional carbonization
PDF
Album
Supp Info
Full Research Paper
Published 27 May 2016

Nanoscale rippling on polymer surfaces induced by AFM manipulation

  • Mario D’Acunto,
  • Franco Dinelli and
  • Pasqualantonio Pingue

Beilstein J. Nanotechnol. 2015, 6, 2278–2289, doi:10.3762/bjnano.6.234

Graphical Abstract
  • manufacturing purposes, in order to improve the machining efficiency, it is however needed have precise periodical patterns fabricated in much shorter times. Thus some researchers have thought of increasing the load applied to the polymer films, studying the bundle formation mechanism at very high forces via a
PDF
Album
Review
Published 02 Dec 2015

Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials

  • Xiaoxing Ke,
  • Carla Bittencourt and
  • Gustaaf Van Tendeloo

Beilstein J. Nanotechnol. 2015, 6, 1541–1557, doi:10.3762/bjnano.6.158

Graphical Abstract
  • between energetic electrons and matter plays a unique role in triggering the reaction. Taking CNT growth as an example, the formation mechanism of CNTs was under debate for years until 2007, when Rodriguez-Manzo et al. monitored the nucleation and growth of a SWCNT through an in situ heating experiment
PDF
Album
Review
Published 16 Jul 2015

A simple approach to the synthesis of Cu1.8S dendrites with thiamine hydrochloride as a sulfur source and structure-directing agent

  • Xiaoliang Yan,
  • Sha Li,
  • Yun-xiang Pan,
  • Zhi Yang and
  • Xuguang Liu

Beilstein J. Nanotechnol. 2015, 6, 881–885, doi:10.3762/bjnano.6.90

Graphical Abstract
  • the observed lattice spacing of 0.196 and 0.278 nm match with the (0 1 20) and (1 0 10) planes of Cu1.8S, respectively. It can be concluded from the analysis that the main trunk of a Cu1.8S dendrite grows along the (0 1 20) direction. To understand the formation mechanism of the Cu1.8S dendrite, we
PDF
Album
Full Research Paper
Published 01 Apr 2015
Other Beilstein-Institut Open Science Activities